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Abstract

Three-dimensional incompressible viscous flow and heat transfer in a rotating U-shaped duct with a square cross-section are studied numerically.
The governing equations including full Navier–Stokes and energy equations are solved using a finite volume method based on the SIMPLER
algorithm in an orthogonal uniform grid. The effects of wall curvature and rotation on the flow field and heat transfer considering different
directions of rotation are presented in detail. The results show that in the bend region, the centrifugal forces due to curvature are significant,
performing an intensive outward secondary flows resulting in an increase of heat transfer on the outer wall. But in the straight parts of the duct,
secondary flows due to Coriolis forces are dominant. The comparison of numerical results at different rotation angles indicates that the maximum
heat transfer rate occurs when the duct rotates about an axis parallel to the axis of duct curvature, at which both the Coriolis and the centrifugal
forces intensify each other, while the minimum heat transfer rate takes place in the negative diagonal axis of rotation with angles of α = 180 and
β = 135.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Fluid flow and heat transfer in rotating ducts occur in many
engineering applications such as cooling in electrical machiner-
ies, gas turbine blades and other rotating systems. Understand-
ing rotational effects on the flow and heat transfer helps to
improve design of those devices.

Orthogonal rotation in straight pipes and ducts has been
widely studied before. Fluid flow and heat transfer for vari-
ous geometries have been discussed by Shah and London [1]
for stationary ducts. Speziale [2,3] used a finite difference
stream function vorticity method to study laminar flow in a
long straight rectangular duct under orthogonal rotation. Soong
[4,5] set up heat transfer measurements in rotating isothermal
rectangular ducts for aspect ratios of 0.2, 0.5, 1, 2, and 5,
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Reynolds numbers ranging from 717 to 16000 and rotational
Reynolds numbers from 20 to 320. Jen and Lavine [6] nu-
merically analyzed laminar forced convection in the entrance
region of an isothermal square duct rotating about an axis per-
pendicular to the duct axis. They solved vorticity transport
equations numerically using the power-law scheme and pre-
sented secondary flows, axial velocity and temperature contours
in the entrance region at three different independent parame-
ters consisting of Prandtl number (Pr), a combined Reynolds
and rotational Reynolds number (Re·ReΩ), and Rossby num-
ber (Ro = Re/ReΩ). Mahadevappa and Rao [7] have done a
numerical study of steady laminar fully developed flow and heat
transfer in rectangular and elliptical ducts rotating about an axis
parallel to the duct axis. They used a finite-difference method
and presented correlations for heat transfer in rotating rectan-
gular and elliptical ducts, indicating that elliptical geometry is
superior to the others that are frequently used as coolant chan-
nels in rotating machinery.

Dean [8], for the first time, studied the secondary flow in
the curved pipe by introducing a single parameter, K , called
the Dean Number, which is defined as Re

√
D/R0. Hwang and
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Nomenclature

a acceleration
Cf skin friction
D hydraulic diameter
K Dean Number
Len dimensionless entrance length
LX,LY ,LZ dimensionless lengths of duct in x, y, and

z directions
Nu Nusselt number
Pr Prandtl number
RC circular bend inner radius
Re Reynolds number
ReΩ rotational Reynolds number
Ro Rossby number
S axial distance of the duct
T dimensionless temperature
x, y, z dimensionless independent variables
V velocity vector

Greek symbols

α angle with respect to x–y plane
β angle with respect to x–z plane
v kinematic viscosity
ρ density
τw wall shear stress
Ω rotational velocity

Subscripts

in inlet variables
x, y, z components in x, y and z directions
wall duct wall
en entrance length
mean mean inlet and outlet variable

Superscripts

∗ dimensional variables
Lai [9,10] studied three-dimensional flow problems in rotating
multi-pass square channels. Most recently Papa [11] has studied
flow field and heat transfer in circular and square channels with
a sharp 90 degree bend rotating about an axis parallel to the
axis of the inlet of channel. In another work, Papa [12] obtained
numerical results for developing laminar flow in ducts having
circular or square cross-sections and a 180 degree bend rotating
either positively or negatively about an axis parallel to the axis
of curvature of the duct.

In this paper, a numerical simulation based on the SIMPLER
finite volume method is performed to study developing incom-
pressible flow and heat transfer through a U-shaped duct with
a square cross-section considering isothermal boundary condi-
tion at the walls. Previous studies on this subject are limited
to the rotational axis perpendicular or parallel to the axial flow
direction. Here, seven different major rotational directions are
taken into account to study in detail the effects of rotational di-
rection on the flow field pattern and consequently on the friction
coefficient and heat transfer rate in a U-shaped duct.

2. Governing equations

Fig. 1 shows the geometry of the channel, where the inlet
velocity is parallel to the z-axis (axis of duct) and radially out-
ward. The length of the straight parts of the channel is 9 times of
hydraulic diameter, D. At the end of the first straight passage,
flow enters the 180 degree circular bend region with the inner
radius of Rc = 1.25D, then passes radially inward through the
second straight part.

The direction of rotation can be shown by its vector compo-
nents, or by its corresponding angles α and β relating to x–y

and x–z planes, respectively.
As shown in Fig. 1, two parallel walls of the duct are denoted

as the top and the bottom walls and other two walls are denoted
the inner and the outer walls.
Fig. 1. Geometry of the duct and coordinate systems.

The governing equations used to study the flow and heat
transfer in a rotating U-shaped square duct for incompressible
flow in a rotating coordinate system include two kinds of coor-
dinate systems, the Cartesian coordinates for two straight parts
of channel and the cylindrical one for bend region.

Using the following non-dimensional parameters

a = D · a∗

w∗2

in

, u = u∗

w∗
in

, v = v∗

w∗
in

, w = w∗

w∗
in

LX = L∗
X

D
, LY = L∗

Y

D
, LZ = L∗

Z

D

ReΩ = Ω · D2

ν
, K = Re

√
D

RC

, Ro = Ω · D
w∗

in

Re = w∗
in · D
ν

, p = p∗

ρw∗2

in

, T = T ∗ − T ∗
in

T ∗
wall − T ∗

in

the dimensionless governing equations in a Cartesian coordi-
nate system are as follows

∂u + ∂v + ∂w = 0 (1)

∂x ∂y ∂z



592 M.R.H. Nobari et al. / International Journal of Thermal Sciences 48 (2009) 590–601
∂u2

∂x
+ ∂uv

∂y
+ ∂uw

∂z

= −∂p

∂x
+ ∂

∂x

(
1

Re

∂u

∂x

)

+ ∂

∂y

(
1

Re

∂u

∂y

)
+ ∂

∂z

(
1

Re

∂u

∂z

)
+ ax (2)

∂uv

∂x
+ ∂v2

∂y
+ ∂vw

∂z

= −∂p

∂y
+ ∂

∂x

(
1

Re

∂v

∂x

)
+ ∂

∂y

(
1

Re

∂v

∂y

)

+ ∂

∂z

(
1

Re

∂v

∂z

)
+ ay (3)

∂uw

∂x
+ ∂vw

∂y
+ ∂w2

∂z

= −∂p

∂z
+ ∂

∂x

(
1

Re

∂w

∂x

)

+ ∂

∂y

(
1

Re

∂w

∂y

)
+ ∂

∂z

(
1

Re

∂w

∂z

)
+ az (4)

∂uT

∂x
+ ∂vT

∂y
+ ∂wT

∂z

= ∂

∂x

(
1

Re · Pr

∂T

∂x

)
+ ∂

∂y

(
1

Re · Pr

∂T

∂y

)

+ ∂

∂z

(
1

Re · Pr

∂T

∂z

)
(5)

where, the starred variables are dimensional ones, Lx , Ly and
Lz are dimensions of the straight parts of the duct (as shown
in Fig. 1), u, v, w are velocity components and ax , ay , az are
acceleration components in the x-, y-, and z-directions, respec-
tively. p denotes pressure and T temperature, and Pr the Prandtl
number.

The centrifugal and Coriolis resultant acceleration in dimen-
sionless vector form is

a = −Ro × (Ro × r) − 2Ro × V (6)

3. Numerical method

A cell-centered finite volume method based on SIMPLER al-
gorithm [13,14] is employed to solve the steady state governing
equations. A power-law scheme is used to calculate the coeffi-
cients of convection and diffusion fluxes through the interfaces.
For mesh generation of the physical domain, the duct is split
into two straight and one bend regions, where uniform stag-
gered cubic and cylindrical control volumes are used for two
straight parts and bend region, respectively. By this staggered
grid, the velocity components are calculated at points that lie
on the faces of the main control volumes.

Using SOR iterative scheme, the maximum relative error for
the convergence of solution is set to be less than 10−5.
Table 1
A comparison of Cf Re and Nu in the straight rectangular duct

Re Cf Re Nu

This work Shah [1] % Difference This work Shah [1] % Difference

100 14.090 14.23 0.98 2.986 2.98 0.20
200 14.164 0.46 2.989 0.30
500 14.377 1.03 3.012 1.07

3.1. Boundary conditions

In this work, the inlet temperature and velocity profiles are
considered uniform.

uin = vin = 0, win = 1, Tin = 0 (7)

At the walls, no-slip condition is used for velocity components
and the temperature of all the walls is considered to be constant
at Twall = 1.

No boundary conditions are required for pressure at the in-
let and walls. Since at these boundaries, which are the faces
of corresponding pressure control volumes, the real values of
velocity vectors are known and there is no appearance of out-
side neighbor node in derivation of Poisson equation of pressure
(or the coefficient of this neighbor node is zero). More de-
tails of the boundary conditions for pressure are discussed by
Patankar [13].

At the exit of duct, the Neumann condition of zero-gradient
is used, and the temperature is exponentially extrapolated so
that the Nusselt number remains constant at the exit of the duct.

3.2. Validation of the numerical method

Flow and heat transfer in the stationary straight rectangular
duct are simulated numerically in order to validate the accuracy
the code developed here. The length of the duct is chosen longer
than the dimensionless hydrodynamic entrance length denoted
by Len to ensure the fully developed flow at the exit of the
duct. The Sparrow integral solution [15] predicts the value of
Len/Re = 0.0065 for the laminar entrance length, and Schlicht-
ing [16] predicts Len/Re = 0.04 by obtaining a series solution.
The value of Len = 30 has been chosen for the Re range from
100 to 500. Table 1 shows the numerical results for the friction
factors and Nusselt numbers at different Reynolds numbers.
The comparison with the numerical results obtained by Shah
and London [1] indicates a very good agreement.

3.3. Grid independency test

A grid independency study is performed using three different
uniform staggered grids of 10 × 10 × 110,20 × 20 × 110, and
24×24×150. The mean Nusselt number is used as a parameter
to check the grid independency of the results, which is shown in
Fig. 2 for the stationary U-shaped square duct at Reynolds num-
ber of 200. The comparison of the three grid results indicates
the grid independency of the numerical code implemented here.
It should be mentioned that all runs considered in this work are
carried out in a grid size of 20 × 20 × 110 (20 × 20 × 40 for the
straight parts and 20 × 20 × 30 for the bend region).
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Fig. 2. Grid independency test at Re = 200.

Fig. 3. Symmetry plane of the duct and main grids. Section A: S/D = 6.075
(z = 6.075), section B: S/D = 9 (z = 9), section C: S/D = 11.75 (mid-
section of Bend), section D: S/D = 14.5 (z = 9), section E: S/D = 17.423
(z = 6.075), section F: S/D = 22.56 (z = 0.9).

4. Results and discussion

Here, the effects of the magnitude and direction of rotation
as well as the bend of the U-shaped duct on the flow field and
heat transfer are studied in detail. Fig. 3 shows a view of sym-
metry plane and grid distribution of the duct where the most
suitable cross sections of A, B, C, D, E and F are chosen to
show the flow and temperature field patterns inside the duct.

4.1. Velocity and temperature fields

To investigate the physical aspects of fluid flow and heat
transfer in the U-shaped duct, the velocity and temperature
fields are taken into account at Re = 200 for the stationary duct
and the duct with two rotation numbers of Ro = 0.1 and 0.2 at
seven different directions of rotation defined in Table 2 by the
two angles of α and β .

In Figs. 4, 5, and 6, the non-dimensional secondary veloc-
ity fields, axial velocity and temperature contours are shown
respectively for eight different cases specified in Table 2. In
each case, the velocity and temperature fields are illustrated at
the six different selected cross-sections of the duct specified in
Fig. 3. Except for case 1 which indicates the stationary duct, in
all other cases the rotation number is fixed at Ro = 0.2.

In the entrance region of the first straight passage of
case 1, the axial velocity profile approaches a parabolic profile
(Fig. 4A), but in the bend region, centrifugal forces gener-
ated due to the curvature produce two counter-rotating vortices
(Fig. 4C). These vortices causes the core fluid moves towards
the outer wall and consequently the peak of the axial velocity
shifts from the center of the duct towards the outer wall, re-
sulting in the thinner boundary layer on the outer and thicker
boundary layer on the inner wall. This is accompanied with a
pressure increase on the outer and a pressure decrease on the
inner wall. The resulting secondary flows begin at the entrance
of the bend region (section B), intensify at the midsection (sec-
tion C), gradually weaken at the downstream (section D), and
finally vanish in the second straight passage (section E). Again
at the outlet, the flow approaches the fully developed condition
(section F). The corresponding axial flow velocity and temper-
ature contours are shown in Figs. 5 and 6, where it can be easily
observed that a thin (thick) hydrodynamic and thermal bound-
ary layers appears at the outer (inner) wall in the bend region,
where the heat transfer rate is higher (lower) than the straight
part of the pipe. However, both of the boundary layers at the top
and the bottom walls become thinner in the bend region and the
axial velocity profile flattens.

Case 2 in Figs. 4–6 is related to the duct rotating positively
about x-axis (α = 0 and β = 0). This case of rotation is called
“positive rotation” where the centrifugal and Coriolis forces
strengthen the effect of each other in the bend region and the
symmetry plane of the duct (plane of x = 0.5) coincides with
the symmetry plane of flow field. The Coriolis forces in this
case generate two symmetrical counter-rotating vortices in the
first and second passages of duct, which are at the same direc-
tion of the vortices generated by the centrifugal forces. These
vortices cause the core fluid to move towards the outer wall in
all over the duct and the maximum temperature and the axial
velocity shifts from the center towards outer wall. In this case
and all other rotational cases, the secondary flow mostly is gov-
erned by the Coriolis forces causing the boundary layer to get
thinner at the outer wall and thicker at the inner wall.

In case 3, the duct rotates negatively about x-axis (α = 180
and β = 180), where the Coriolis forces acting in the oppo-
site direction comparing with case 2 generate two symmetrical
counter-rotating vortices in the first and second straight pas-
sages of the duct and move the core fluid towards the inner wall
to increase heat transfer rate and friction over it. In this case, the
axial velocity peak moves from the center toward inner wall due
to Coriolis forces, but in the bend region, the centrifugal forces
become dominant and perform the vortices in the opposite di-
rection of those generated in the first passage. Downstream of
the bend region, these vortices vanish gradually and again the
Coriolis forces govern the flow pattern in the second straight
passage.

To investigate further the effect of rotation direction change
on the flow and temperature field, case 4 is taken into account
when the duct rotates about y-axis (α = 90 and β = 0). In this
case, the top wall (x = 1) is the leading and the bottom wall
(x = 0) is the trailing surface. In the first straight passage (sec-
tion A), the Coriolis forces generate two counter-rotating vor-
tices enforcing the core fluid towards the trailing (high pressure)
wall and shifting the maximum axial velocity and minimum
temperature towards it. But, in the bend region, the flow pat-
tern deforms due to dominant centrifugal forces resulting in a
large vortex near the leading and a small one near the trailing
wall (sections B, C, and D). Here, the maximum axial veloc-
ity and the minimum temperature of the fluid moves near the
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Fig. 4. Secondary flow field in cross sections A–F of the stationary and rotating U-shaped square duct about seven different axes at Re = 200. Top (outer wall),
bottom (inner wall), left (bottom wall), right (top wall).
outer wall at the corner close to the trailing wall. In the sec-
ond straight passage (sections E and F) the direction of Coriolis
forces are reversed, creating two vortices which move the core
fluid towards the leading wall in contrast to the first passage.

The duct rotation about the axis of y = +x (α = 45 and
β = 0) is considered in case 5. In this case, Coriolis forces act
in diagonal direction of the duct cross-section, generating two
counter-rotating triangular vortices in each of the first and sec-
ond passages. The velocity and temperature contours show that
the cold fluid with high velocity moves near the outer bottom
corner of the first passage, but in the second passage it occurs
near the outer top corner of the second passage due to reversing
the Coriolis forces direction and generation of the vortices at the
opposite corners. A similar pattern is observed in case 6 which
corresponds to the rotation about the axis of y = −x (α = 135
and β = 180). In either of the two cases as well as case 4, the
resultant effect of the centrifugal and Coriolis forces in the bend
region (section C) deforms symmetric counter rotating vortices
into a large and a small ones.

Rotation in x–z plane is studied considering two other ori-
entations of z = +x, where α = 0 and β = 45 (case 7), and
z = −x, where α = 180 and β = 135 (case 8). Secondary flow
patterns in these two cases are similar to cases 2 and 3, respec-
tively, but there is a minor clockwise deviation of contours in
the bend region of the duct (sections C and D).

By increasing the rotation number in all the above mentioned
cases, the near wall velocity and temperature gradients increase,
the peak points of the velocity and temperature profiles move



M.R.H. Nobari et al. / International Journal of Thermal Sciences 48 (2009) 590–601 595
Fig. 5. Dimensionless axial velocity contours in cross sections A–F of the stationary and rotating U-shaped square duct about seven different axes at Re = 200. Top
(outer wall), bottom (inner wall), left (bottom wall), right (top wall).
far away from the center, the velocity profile flattens more, and
the outlet mean temperature increases.

Furthermore, by increasing the Reynolds number from 200
to 500 and 1000, the strength of vortices and the ratio of Cori-
olis to Centrifugal forces increase, four or six vortices in sec-
tions C and D are generated, the axial velocity profile flattens,
and the outlet mean temperature decreases.

4.2. Skin friction and heat transfer

Since friction factor and Nusselt number are two of the most
important flow parameters, the product of the peripherally av-
eraged friction factor and the Reynolds number, Cf Re, and the
average Nusselt numbers on the walls along with the peripher-
ally averaged Nusselt numbers are presented numerically. The
typical flow and temperature fields shown for the eight cases
in Figs. 4–6 are helpful in better understanding some physi-
cal points behind the friction factor and heat transfer coefficient
variations. Here, the friction factor is defined as

Cf = 2τ̄w

ρw∗2

in

(8)

where τ̄w is the peripherally averaged wall shear stress and can
be calculated using local derivative as follows

Cf = 2∂w̄/∂n|wall

Re
(9)
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Fig. 6. Dimensionless temperature contours in cross sections A–F of the stationary and rotating U-shaped square duct about seven different axes at Re = 200. Top
(outer wall), bottom (inner wall), left (bottom wall), right (top wall).
Table 2
Different cases of rotation

Case no. 1 2 3 4 5 6 7 8

Axis of rotation

−x −x y y = x,

z = 0
y = −x,

z = 0
z = x,

y = 0
z = −x,

y = 0

α (degree) – 0 180 90 45 135 0 180
β (degree) – 0 180 0 0 180 45 135

To study the friction factor in the rotating duct, the periph-
erally averaged values of Cf Re versus dimensionless axial dis-
tance S/D for the stationary and positive rotation cases at three
different Reynolds numbers are shown in Fig. 7. The compar-
ison of the numerical results indicates that at a fixed amount
of S/D, the Cf Re increases proportional to the Re and Ro all
over the duct, except in the bend region where the effect of ro-
tation number is small on the Cf Re curve. Fig. 8 shows the
same results in the case of negative rotation (α = β = 180),
where similar to the previous case the Cf Re increases as Re
and Ro increase through the duct, but some oscillation behavior
appears in the second straight passage and in the bend region
where a relative minimum value inside and two relative max-
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Fig. 7. Cf Re versus axial distance of the duct in positive rotation about x-axis
(α = 0, β = 0).

Fig. 8. Cf Re versus axial distance of the duct in negative rotation about x-axis
(α = 180, β = 180).

imum values at the ends are distinguished by a forty percent
decrease in skin friction comparing with the corresponding pos-
itive rotation cases. This can be easily deduced by considering
the typical flow fields shown in Figs. 4–6 for the corresponding
cases. As it is clear, in the positive rotation case the centrifu-
gal and Coriolis forces act at the same direction in the bend
region and strengthen the secondary flow effects, which is fol-
lowed by a friction factor increase in the bend region comparing
with the stationary case. But in the negative rotation case, the
reverse occurs and the centrifugal and Coriolis forces act in the
opposite direction in the bend region. This weakens the sec-
ondary flow effects and decreases the friction factor values in
the bend region comparing with those in the stationary case (see
sections B, C, D in Fig. 4).

Now, the effects of different rotation directions on the heat
transfer rate are studied in Figs. 9–12, where the peripherally
averaged Nusselt numbers and the average Nusselt numbers on
the four side walls versus the axial direction of the duct are
illustrated at different rotation numbers for Re = 200 includ-
ing Ro = 0. In the entrance of the stationary case, due to the
thin boundary layer, the heat transfer rate is high, but down-
stream, the average Nusselt number of the duct decreases and
approaches the fully developed value. Because of formation of
secondary flows in the bend region, the average Nusselt num-
ber increases as twice as its value in the first straight passage.
Again in the second straight passage, as the secondary flows
vanish, the Nusselt number gradually decreases to the fully de-
veloped value. In the stationary case, the Nusselt numbers on
the four side walls are identical in the first straight passage, but
in the bend region, a higher Nusselt number on the outer wall
(about three times of its value before the bend region) appears
due to the sharp temperature gradient generated by the centrifu-
gal forces on this surface. For the same reason, higher values of
the Nusselt numbers on the top and bottom walls of the bend
region appear, twice as much as the straight passage values.
However, the centrifugal forces retard the fluid flow on the inner
wall and thicken the thermal boundary layer which reduces the
heat transfer rate about half of the one in the straight passage.
This physical effects of the centrifugal forces on making thinner
or thicker the hydrodynamic or thermal boundary layers in the
bend region can be easily seen in Figs. 4–6 at cross-section C.

In all cases of rotation, the average Nusselt numbers in the
straight parts of the duct are higher than the stationary one be-
cause of the existence of the Coriolis forces. This increase of
Nusselt number is almost proportional to the rotation number.
But, when the rotation vector has a component parallel to the
axis of duct (β �= 0,180), due to reduced Coriolis forces the av-
erage Nusselt number is lower than the other rotational cases.
In the bend region, the Nusselt number does not change propor-
tional to the rotation number, however, it converges to a certain
value at the bend outlet. Furthermore, the Nusselt number is
very sensitive to the direction of rotation. When α,β > 90,
the Coriolis forces act opposite to the centrifugal forces in the
bend region and counter-balance each other. This phenomenon
moves the cold fluid toward the core of the duct and thickens
the boundary layer which results in the reduction of the Nusselt
number at the inlet of the bend region. Beyond the mid-section
of the bend region, the Coriolis forces has dominant role in the
generation of secondary flows, and hence the average Nusselt
number starts increasing again.

To get more insight into the rotation direction effect on the
heat transfer, two positive and negative rotation directions are
illustrated in Figs. 9 and 10, respectively. As it is clear from
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Fig. 9. Average peripheral Nusselt number and each four wall Nusselt number
of the duct versus axial distance at Re = 200 for rotation axis at angles of α = 0
and β = 0.

Fig. 9, in the positive rotation the heat transfer rate is larger
than the stationary duct on the outer wall due to the thin ther-
mal boundary layer generated by the strengthened secondary
flow effects and lower than that on the inner wall due to thick
thermal boundary generated for the same reason. However, the
Fig. 10. Average peripheral Nusselt number and each four wall Nusselt number
of the duct versus axial distance at Re = 200 for rotation axis at angles of α =
180 and β = 180.

Nusselt numbers on the top and bottom walls proportionally
increase with rotation number. Reverse effects occur in the neg-
ative rotation (Fig. 10), where the inner wall has a larger and the
outer wall has a lower value of the Nusselt number. The top and
bottom walls behaves similar to the positive rotation except in
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Fig. 11. Average peripheral Nusselt number and each four wall Nusselt number
of the duct versus axial distance at Re = 200 for rotation axis at angles of α =
90 and β = 0.

the bend region the Nusselt number decreases first and increases
beyond the mid-section. Downstream, the Nusselt number vari-
ation trend is similar to the first straight passage. The physics
of getting thinner or thicker the boundary layers on the outer
or inner walls for the positive and negative cases is easily un-
Fig. 12. Average peripheral Nusselt number and each four wall Nusselt number
of the duct versus axial distance at Re = 200 for rotation axis at angles of α =
45 and β = 0.

derstandable by tracking the core fluid flow directions in the
typical corresponding cases of Figs. 4–6.

In the rotation about y-axis (Fig. 11), the Nusselt numbers
on the outer and inner walls are higher than the stationary val-
ues. Also, the Nusselt number on the bottom wall (top wall)
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Fig. 13. Total Nusselt number versus rotation number in different rotating cases,
(A) Re = 200, (B) Re = 500.

approaches a higher (low) value than the stationary case at the
end of first passage, and then decreases (increases) to a value
lower (higher) than the stationary fully developed one. In the
rotation at the angles of α = 45 and β = 0 (Fig. 12), the Nusselt
number variation on the inner and outer walls behaves similar
to the case of α = β = 0, but on the top and bottom walls, it has
the same trend as the case of α = 90 and β = 0 where the val-
ues are closer to the stationary case. The same behavior appears
in the case of α = 135 and β = 180. In addition, the numeri-
cal results obtained for the two more cases of α = 0, β = 45
and α = 180, β = 135 are similar to the cases shown in Figs. 9
and 10, respectively.

To investigate the overall performance of heat transfer rate
in the duct for the previously mentioned cases, a total Nusselt
number is defined by Eq. (10) using the energy balance for the
whole duct

Nu = − Re Pr

4S/D
ln(Twall − Tmean) (10)

where S/D is the dimensionless axial distance of the duct.
Fig. 13 shows different total Nusselt numbers at Re = 200 and
Re = 500. As shown in this figure, by increasing the Reynolds
number, the total Nusselt number increases, and the variation
of the total Nusselt number indicates the same trend at different
rotation numbers when the axis of rotation is fixed. Regardless
of the value of the Reynolds number, the total Nusselt number
in the positive rotations is greater than the negative ones. Fur-
thermore, the maximum Nusselt number occurs at the positive
rotation with rotation axis orientation of α = 0 and β = 0, and
the minimum Nusselt number occurs in the negative rotation
with rotation axis orientation of α = 180 and β = 135, where
the Coriolis forces and the centrifugal forces act opposite each
other in the bend region.

5. Summary and conclusion

A numerical method is performed to study three-dimensional
viscous flow and heat transfer in a rotating U-shaped square
duct. Non-inertial full Navier–Stokes equations along with the
energy equation are solved by a finite volume method based
on the SIMPLER algorithm. The effects of the bend region,
Reynolds number, rotation number and different rotation direc-
tions on the flow field and heat transfer are discussed in detail.

Due to rotation and the bend curvature of the duct, secondary
flows are generated as two counter-rotating vortices pushing
the maximum axial velocity and cold fluid to the outer wall.
Consequently, the boundary layer becomes thinner on the outer,
increasing the heat transfer rate, and thicker on the inner wall,
decreasing heat transfer rate.

The pattern and strength of secondary flows are strongly de-
pendent on the direction of rotation. The general pattern is a
pair of counter-rotating vortices which may break to four or
more vortices in higher Reynolds and rotation numbers. Direct
influence of these secondary flows is the increase of heat trans-
fer rate on the high pressure side and reduction of it on the low
pressure side. The friction factor and the average Nusselt num-
ber increases due to rotation. The maximum heat transfer rate
occurs when the duct rotates positively about x-axis, while the
minimum heat transfer rate takes place in the negative rotation
with rotation angles of α = 180 and β = 135.
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